

Curriculum Progression Pathway for Science

Subject Intent:

Our vision for Science at Hope Sentamu Learning Trust is a curriculum that is inclusive and aspirational for all students, which develops an appreciation of the uses and significance of science to society and their own lives as well as the contribution that science has made in the past.

Our ambitious five year science curriculum is spiral and iterative in nature allowing for students to revisit, reinforce and build upon concepts that run throughout our 'big ideas' (BEST University of York). The most important concepts in the three scientific disciplines, eg. cells, particles and energy run as threads through the whole curriculum. Our curriculum is also underpinned by the substantive and disciplinary knowledge that students are expected to master based on the KS3 National Curriculum and AQA Specifications.

Using the National Curriculum as its key framework, supported by evidence based research from BEST evidence science (University of York) and the wealth of knowledge and experience across the trust we have produced a carefully sequenced learning strategy that builds on prior knowledge allowing for pupils' schema to develop from novice to expert. In each year the three science disciplines are interleaved to provide ample opportunity for retrieval of key concepts and develop strong interdisciplinary links.

Why is the study of Science important?

Studying science allows students to explain the material world and develop a sense of excitement and curiosity about natural phenomena. By learning about the practices of science students will appreciate the nature and status of scientific knowledge; how it has developed over time and how ideas can be adapted when new evidence is available.

As students learn science, they will also learn about its uses and significance to society and their own lives. It is not just a subject to be covered in school and then forgotten as students move into the next part of their lives. A good understanding of the three scientific disciplines, Biology, Chemistry and Physics, allows all of us to make sense of information that we meet in our everyday lives. From health and medical information so that we can live healthy lives, the materials that we encounter and why, as humans, we are endeavouring to make changes to the way we manufacture and produce energy to reduce our impact on our world, to making sense of information presented to us in the media (social media, newspapers, television or other sources) so that we can

appreciate when it has been oversimplified or provided by an unreliable or biased source.

By working towards qualifications in science subjects, students gain highly regarded academic qualifications that provide the foundation for a range of diverse and valuable careers. Whether a student achieves GCSE and then moves into other areas or decides to take their science study to a higher level, qualifications in science or science related subjects are the foundation for a very diverse and interesting range of careers that make a significant contribution to our world.

What skills will the study of Science teach you?

- Curiosity about the material world
- Analytical thinking
- Application of mathematical techniques
- Data analysis
- Communication of information for a variety of audiences, including extended writing
- Critical thinking
- Attention to objectivity and concern for accuracy, precision, repeatability and reproducibility
- Understanding that scientific methods and theories develop over time
- Ability to evaluate risk
- · Ability to use equipment safety and correctly

What will you know and understand from your study of Science?

Biology

- Structure and function of living organisms
- · Materials and cycles of energy
- Interactions and interdependencies
- Genetics and evolution

Chemistry

- The particulate nature of matter
- Atoms, elements and compounds
- Pure and impure substances
- Chemical reactions
- Energetics
- The Periodic table
- The reactivity series
- Properties of materials
- The Earth and atmosphere

Physics

- Energy and energy changes and transfers
- Motion and forces
- Waves
- Electricity and electromagnetism
- Matter
- Space physics

How does your study of Science support your learning in other subjects?

As a result of studying Science you will develop your skills in communication that are needed for all your subjects. The numeracy skills developed in mathematics are used widely in many subjects and developed and practised in Science. Knowledge and skills developed in Science are transferable to subjects such as PE, Geography, History, Music, Art, Health and Social Care, Hair and Beauty and Technology subjects.

Studying science provides repeated encounters of content covered in other subjects, allowing you to retrieve and develop your wider understanding of these. For example climate change, the causes and impact, are covered in Biology, Chemistry and Physics as well as Geography. The emphasis on writing scientific reports and articulating ideas clearly aids literacy and communication skills, benefiting English and other humanities subjects. This holistic approach strengthens pupils' overall academic development and prepares them for cross-curricular challenges.

How can you deepen your understanding of Science?

Our Science curriculum helps pupils deepen their understanding of science by building a strong foundation of key scientific concepts, which are progressively developed and interlinked across topics and years. It encourages pupils to think critically, apply their knowledge to solve real-world problems, and understand the nature of scientific enquiry. By focusing on practical investigations, data analysis, and the development of hypotheses, the curriculum fosters curiosity and equips pupils with the skills to explore complex ideas. At KS4, it consolidates prior learning while introducing more advanced concepts, enabling pupils to appreciate the relevance of science in modern society and preparing them for further study or careers in scientific fields.

How can Science support your future?

Science provides the foundation for a range of diverse and valuable careers that are crucial for the economic, environmental and social development of the UK and the world.

There are obvious careers that link directly to the study of GCSE Science, 'A' level Sciences and higher level Science qualifications, e.g medical careers, research scientists, engineering.

However, there are many, less obvious, careers that rely on a good understanding of Science. Games designers must have a detailed understanding of forces to ensure that virtual interactions between objects reflect the reality of how they would in the real world.

The National Careers Service provides careers information, advice and guidance as a starting point to find links to content covered in the Science curriculum.

https://nationalcareers.service.gov.uk/

Exam board used in Y10 & Y11

AQA Combined Science: Trilogy 8464 AQA Biology 8641 AQA Chemistry 8642 AQA Physics 8643

Big ideas (BEST evidence science - University of York):

Biology - B: The cellular basis of life, Heredity and life cycles, Organisms and their environments, Variation, adaptation and evolution, Health and disease

Chemistry - C: Substances and properties, Particles and structure, Chemical reactions, Earth chemistry, Dynamic earth

Physics - P: Matter, Forces and motion, Sound, light and waves, Electricity and magnetism, Earth in space

	Year 7	Year 8	Year 9	Year 10	Year 11
Autumn 1	Materials (Substances and properties) - C Key concepts: Differences between materials Composite materials Ceramics Polymers Particles (Particles and structure) - C	(Health and disease) - B Key concepts:	Cell Biology (The cellular basis of life) - B Key concepts: • Microscopy including calculations • Eukaryotes and prokaryotes • Cell specialisation and differentiation • Diffusion • Osmosis • Active transport	Communicable disease (Health and disease) - B Key concepts:	Inheritance (Heredity and life cycles) - B Key concepts: • DNA and the genome • Sexual and asexual reproduction • Meiosis • Inheritance in action: Inheriting sex • Inheriting other features • Inherited disorders
	Key concepts:States of matterMelting and freezing	AlcoholSmoking The periodic table	Exchange surfacesSA: vol calculations Mixtures and separation	responsesVaccinationAntibiotics and painkillers	Embryo screening Forces in motion (Forces and motion) - P
	 Boiling points Evaporation Diffusion Cells (The cellular basis of life) - B Key concepts: Microscopy 	 (Chemical reactions) - C Key concepts: The periodic table Metals and non-metals Groups in the periodic table 	(Substances and properties) - C Key concepts:	 Discovering drugs Ions (Particles and structure) - C Key concepts: Atoms into ions Ionic bonding Giant ionic 	Key concepts:
	 Animal and plant cells Specialised cells Diffusion in cells Unicellular organisms 	Displacement reactions Electricity (Electricity and magnetism) - P Key concepts:	 Mixtures - Filtration Evaporation Crystallisation Distillation + fractional distillation Paper 	structures Empirical formula • Properties of ionic	 and third law Stopping distance and reaction time Factors affecting braking distance Momentum

Hope SENTAMU LEARNING TRUST

	Brownian motion Gas pressure	 Static electricity Circuits Current and series circuits Current and parallel circuits Potential difference in series Potential difference in parallel circuits Resistance Measuring resistance 	chromatography Rf values Identification of common gases	and alloys Electrical circuits (Electricity and magnetism)- P Key concepts: • Moving charge and current • Electrical circuits/incl symbols • Potential difference, resistance and the VIR relationship • Investigate current and potential difference graphs for different components. • Energy and power in electrical circuits	Conservation of momentum Rates of reaction (Chemical reactions) - C Key concepts: Calculating rates of reaction Catalysts Reversible reactions Equilibrium Year 11 mock - Paper 1
Autumn 2	Energy 1 (Matter, forces + motion) - P Key concepts: • Energy and energy stores • Conservation of energy • Insulators • Convection • Radiation	Animal and plant processes (The cellular basis of life) - B Key concepts: • Photosynthesis • Leaf adaptations • Transport in plants • Aerobic respiration • Anaerobic respiration	Conservation and dissipation of energy (Matter) - P Key concepts: • Energy stores and systems • Work done and energy transfer • Changes in energy - GPE, KE, elastic potential	Health and non-communicable disease (Health and disease) - B Key concepts: • Health and disease • Cancer • Smoking • Diet and exercise • Alcohol and other carcinogens	Variation and evolution (Variation, adaptation and evolution) - B Key concepts: • Variation • Evolution and natural selection • Antibiotic resistance • Evidence for evolution • Fossils

Hope SENTAMU LEARNING TRUST

cellu - B Key c - L - C - C - C - C - C - C - C - C - C - C	concepts: Levels of organisation Gas exchange Breathing Skelton Joints Muscles aration iniques ostances and oerties) - C concepts: Pure substances and mixtures Solutions Solubility Filtration and evaporation Distillation Chromatography	 Fermentation Chemical reactions (Chemical reactions) - C Key concepts: What are chemical reactions? Chemical formulae and word equations Conservation of mass and oxidation Catalysts Endo and exothermic reactions Thermal decomposition 	 Energy dissipation Energy and efficiency Energy consumption in devices Power and appliances Cell division (Heredity and life cycles) - B Key concepts: DNA and the genome Chromosomes Mitosis and the cell cycle Growth and differentiation Stem cells Stem cells and ethics 	Chemical changes (Chemical reactions) - C Key concepts:	 Extinction Selective breeding Genetic engineering and ethics Classification of living organisms The Earth's resources (Earth chemistry) - C Key concepts: Finite and renewable resources Water safe to drink Treating wastewater Extracting metals from ores Life cycle assessments Reduce, reuse and recycle

		 Plant tissues Transport Photosynthesis Rates of photosynthesis - limiting factors Rate of photosynthesis - Inverse square law Uses of glucose from photosynthesis Chemical calculations (Chemical reactions) - C Key concepts: Conservation of mass and balanced chemical equations Relative formula mass and % by mass in a compound Mass changes when a reactant or product is a gas 	

				avogadro's/RFM to moles vice versa • Amounts of substances in equations/reacting masses • Using moles to balance equations • Concentrations	
Spring 1	End point assessment 1 Forces (Forces and motion) - P Key concepts: • Squashing and stretching • Drag and friction • Streamlining • Balanced and unbalanced forces	End point assessment 1 Motion and pressure (Matter + forces and motion) - P Key concepts:	End point assessment 1 Atomic structure (Particles and structure) - C Key concepts: • Atoms, elements and compounds • Chemical equations - and balancing equations • Structure of the atom • Atoms - mass and atomic number • Relative atomic mass and isotopes • Electronic structure	Forces in balance (Forces and motion) - P Key concepts:	Electromagnetism (Electricity and magnetism) - P Key concepts:

		and inheritance) - B Key concepts:	 Development of the model of the atom Energy by heating (Matter) - P Key concepts: Energy transfers by heating - Conduction Insulators Heating and insulation homes Energy resources (Matter) - P Key concepts: Non renewable energy resources Renewable energy resources 	respiration Response to exercise Metabolism and the liver Extraction of metals (Chemical reactions) - C Key concepts: The reactivity series Displacement reactions Oxidation and reduction Electrolysis	 Biodiversity Waste management Land use - include peat bogs Deforestation Global warming Maintaining biodiversity Year 11 mock - Paper 2
Spring 2	Atoms, elements and compounds (Particles and structure) - C Key concepts:	Metals and acids (Chemical reactions) - C Key concepts:	Organisation and the digestive system (The cellular basis of life) - B Key concepts: • Principles of organisation • The digestive system	Waves (Sound, light, waves) - P Key concepts: Transverse and longitudinal waves Properties of waves Types of electromagnetic waves	Revision for GCSE

non-metals Compounds Chemical formulae Sound (Sound and waves) - P Key concepts: Waves Sound and transfer Loudness a pitch Detecting so Echoes and ultrasound	 Metals and oxygen Metals and water Reactivity series Displacement reactions Extracting metals with carbon 	Key concepts: Development of the periodic table Group 1 Group 7 Displacement reactions Group 0 Transition metals	 Properties of electromagnetic waves Reflection and refraction Uses and applications of electromagnetic waves The nervous system and hormonal control (The cellular basis of life) - B Key concepts: Hormones in human reproduction Hormones in human reproduction - interactions of hormones Contraception The use of hormones to control fertility 	
Summer 1 Reproduction (Heredity and li	Light (Sound, light, waves) - P	Transport in animals (The cellular basis of	Covalent molecules (Particles and	

Hope SENTAMU LEARNING TRUST

cycles) - B Key concepts: Puberty and adolescence Human reproductive systems Fertilisation Development of a foetus Menstrual cycle Flowers and pollination	Key concepts: Light Reflection Refraction The eye and pinhole cameras Colour Ecosystems (Organisms and their environments) - B Key concepts: Food chains and	life) - B Key concepts: Blood Blood vessels The heart Helping the heart Coronary heart disease Breathing and gas exchange The Earth's atmosphere (Earth	structure) - C Key concepts: Properties of small molecules Covalent bonding Giant covalent structures - diamond, graphite, silica Fullerenes and graphene Polymers
Energy 2 (Matter) - P Key concepts: • Power and energy • Energy in the home • Energy in food • Non renewable energy • Renewable energy	2 Loosystems	 The evolving atmosphere Greenhouse gases Global climate change Carbon footprint Atmospheric pollutants 	 Crude oil, hydrocarbons and alkanes Fractional distillation Cracking and alkenes Complete and incomplete combustion
		Particle model and matter (Matter) - P Key concepts: • Density	Energy changes (Chemical reactions) - C

			 Internal energy Specific heat capacity Changes of state and specific latent heat Particle motion in gases 	Key concepts: Exothermic and endothermic reactions Reaction profiles Bond energy calculations Radioactivity (Matter) P Key concepts: Structure of an atom + isotopes The development of the model of the atom Radioactive decay and nuclear radiation Nuclear equations Half life Radioactive contamination	
Summer 2	End point assessment 2	End point assessment 2	End point assessment 2	Revision and Year 10 mocks	
	Space (Earth in space) - P Key concepts: The spinning	Magnetism (Electricity and magnetism) - P Key concepts:	Organisms and their environments (Organisms and their environments) - B		

Earth Our solar system Gravity Stars, galaxies and the universe Heating by the sun The Earth's tilt Seasons on Earth	 Magnetic forces Magnetic fields Electromagnets Electromagnet investigation Uses of Electromagnets Electric motors The Earth (Dynamic Earth) - C Key concepts: The earth The earth The atmosphere Sedimentary rocks Igneous rocks Metamorphic rocks The rock cycle The carbon cycle Human impact and recycling Climate change 	 Key concepts: Food chains and webs Populations, communities, ecosystems Interdependence Biotic and abiotic factors Competition Adaptations Sampling techniques 		
--	--	---	--	--